Quanta Magazine runs a story covering our recent Science paper

Quanta Magazine, published by Simon Foundation, runs an article on the hidden computational power of dendrites, drawing inspiration from our recent Science paper. To accurately communicate the story, Quanta's writer Jordana Cepelewicz consulted Dr. Poirazi, and parts of the interview are included in the article. Give it read!


Below we copy an excerpt:



To figure out what the new kind of spiking might be doing, the scientists teamed up with Poirazi and a researcher in her lab in Greece, Athanasia Papoutsi, who jointly created a model to reflect the neurons’ behavior.


Maybe you have a deep neural network within a single neuron. And that’s much more powerful in terms of learning difficult problems, in terms of cognition.


The model found that the dendrite spiked in response to two separate inputs — but failed to do so when those inputs were combined. This was equivalent to a nonlinear computation known as exclusive OR (or XOR), which yields a binary output of 1 if one (but only one) of the inputs is 1.


This finding immediately struck a chord with the computer science community. XOR functions were for many years deemed impossible in single neurons: In their 1969 book Perceptrons, the computer scientists Marvin Minsky and Seymour Papert offered a proof that single-layer artificial networks could not perform XOR. That conclusion was so devastating that many computer scientists blamed it for the doldrums that neural network research fell into until the 1980s.


Neural network researchers did eventually find ways of dodging the obstacle that Minsky and Papert identified, and neuroscientists found examples of those solutions in nature. For example, Poirazi already knew XOR was possible in a single neuron: Just two dendrites together could achieve it. But in these new experiments, she and her colleagues were offering a plausible biophysical mechanism to facilitate it — in a single dendrite.


“For me, it’s another degree of flexibility that the system has,” Poirazi said. “It just shows you that this system has many different ways of computing.” Still, she points out that if a single neuron could already solve this kind of problem, “why would the system go to all the trouble to come up with more complicated units inside the neuron?”



Read more at: